Disrupting SUMOylation Enhances Transcriptional Function and Ameliorates Polyglutamine Androgen Receptor-Mediated Disease

Jason P. Chua, Satya L. Reddy, Zhigang Yu, Elisa Georgetti, Heather L. Montie, Sarmistha Mukherjee, Jake Higgins, Richard C. McEachin, Diane M. Robins, Diane E. Merry

Research output: Contribution to journalArticlepeer-review

Abstract

Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pathogenesis remains controversial. Here, we sought to dissociate effects of diminished AR function from polyQ-mediated proteotoxicity by enhancing the transcriptional activity of polyQ AR. To accomplish this, we bypassed the inhibitory effect of AR SUMOylation (where SUMO indicates small ubiquitin-like modifier) by mutating conserved lysines in the polyQ AR that are sites of SUMOylation. We determined that replacement of these residues by arginine enhances polyQ AR activity as a hormone dependent transcriptional regulator. In a murine model, disruption of polyQ AR SUMOylation rescued exercise endurance and type I muscle fiber atrophy; it also prolonged survival. These changes occurred without overt alterations in polyQ AR expression or aggregation, revealing the favorable trophic support exerted by the ligand-activated receptor. Our findings demonstrate beneficial effects of enhancing the transcriptional function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may be a potential target for therapeutic intervention in SBMA.

Original languageAmerican English
JournalJournal of Clinical Investigation
Volume125
StatePublished - Feb 1 2015

Keywords

  • Neurodegenerative Disease
  • androgen receptors
  • atrophic muscular disorders
  • sumoylation

Disciplines

  • Medicine and Health Sciences

Cite this