Abstract
This study examines the role of F-spondin, an extracellular matrix protein of osteoarthritic cartilage, during chondrocyte maturation in embryonic growth plate cartilage. In chick tibia, F-spondin expression localized to the hypertrophic and calcified zones of the growth plate. Functional studies using tibial organ cultures indicated that F-spondin inhibited (∼35%, p = 0.02), and antibodies to F-spondin increased (∼30%, p < 0.1) longitudinal limb growth relative to untreated controls. In cell cultures, induction of chondrocyte maturation, by retinoic acid (RA) or transforming growth factor (TGF)-β treatment led to a significant upregulation of F-spondin (p < 0.05). F-spondin transfection increased mineral deposition, alkaline phosphatase (AP) and matrix metalloproteinase (MMP)-13 mRNA levels (p < 0.05), and AP activity following RA stimulation, compared to mock transfected controls. Using AP as a differentiation marker we then investigated the mechanism of F-spondin promaturation effects. Blocking endogenous F-spondin via its thrombospondin (TSR) domain inhibited RA induced AP activity 40% compared to controls (p < 0.05). The stimulatory effect of F-spondin on AP expression was also inhibited following depletion of TGF-β from culture supernatants. Our findings indicate that F-spondin is expressed in embryonic cartilage, where it has the capacity to enhance chondrocyte terminal differentiation and mineralization via interactions in its TSR domain and TGF-β dependent pathways.
Original language | American English |
---|---|
Journal | Journal of Orthopaedic Research |
Volume | 28 |
State | Published - Oct 1 2010 |
Keywords
- Alkaline Phosphatase
- Animal
- Animals
- Cell Differentiation
- Cells
- Chick Embryo
- Chondrocytes
- Cultured
- Extracellular Matrix Proteins
- Female
- Growth Plate
- Inbred Strains
- Matrix Metalloproteinase 13
- Mice
- Models
- Osteogenesis
- Pregnancy
- Transforming Growth Factor beta
- Tretinoin
Disciplines
- Medical Biochemistry
- Medicine and Health Sciences