Functional role of sodium glucose transporter in high glucose-mediated angiotensin type 1 receptor downregulation in human proximal tubule cells

Rekha Yesudas, Russell Snyder, Thomas Abbruscato, Thomas Thekkumkara

Research output: Contribution to journalArticlepeer-review

Abstract

Previously, we have demonstrated human angiotensin type 1 receptor (hAT(1)R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347-4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT(1)R repression in primary hPTEC. Cells were exposed to normal glucose (5.5 mM) and high glucose (25 mM), followed by determination of hyperglycemia-mediated changes in receptor expression and glucose transporter activity. Exposure of cells to high glucose resulted in downregulation of ANG II binding (4,034 ± 163.3 to 1,360 ± 154.3 dpm/mg protein) and hAT(1)R mRNA expression (reduced 60.6 ± 4.643%) at 48 h. Under similar conditions, we observed a significant increase in glucose uptake (influx) in cells exposed to hyperglycemia. Our data indicated that the magnitude of glucose influx is concentration and time dependent. In euglycemic cells, inhibiting sodium-glucose cotransporters (SGLTs) with phlorizin and facilitative glucose transporters (GLUTs) with phloretin decreased glucose influx by 28.57 ± 0.9123 and 54.33 ± 1.202%, respectively. However, inhibiting SGLTs in cells under hyperglycemic conditions decreased glucose influx by 53.67 ± 2.906%, while GLUT-mediated glucose uptake remained unaltered (57.67 ± 3.180%). Furthermore, pretreating cells with an SGLT inhibitor reversed high glucose-mediated downregulation of the hAT(1)R, suggesting an involvement of SGLT in high glucose-mediated hAT(1)R repression. Our results suggest that in hPTEC, hyperglycemia-induced hAT(1)R downregulation is largely mediated through SGLT-dependent glucose influx. As ANG II is an important modulator of hPTEC transcellular sodium reabsorption and function, glucose-mediated changes in hAT(1)R gene expression may participate in the pathogenesis of diabetic renal disease.
Original languageAmerican English
JournalAmerican Journal of Physiology: Renal Physiology
Volume303
DOIs
StatePublished - Sep 2012

Disciplines

  • Physiology

Cite this