Abstract
Nutrient intake stimulates the secretion of the gastrointestinal incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert glucose-dependent insulinotropic effects and assist pancreatic insulin and glucagon in maintaining glucose homeostasis. GLP-1 also suppresses glucose-dependent glucagon secretion, slows gastric emptying, increases satiety, and reduces food intake. An impaired incretin system, characterized by decreased responsiveness to GIP and markedly reduced GLP-1 concentration, occurs in individuals with type 2 diabetes mellitus (T2DM). The administration of GLP-1 improves glycemic control, but GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4). Exenatide, a DPP-4-resistant exendin-4 GLP-1 receptor agonist, exhibits the glucoregulatory actions of GLP-1 and reduces body weight in patients with T2DM. It may possess cardiometabolic actions with the potential to improve the cardiovascular risk profile of patients with T2DM. DPP-4 inhibitors such as sitagliptin and saxagliptin increase endogenous GLP-1 concentration and demonstrate incretin-associated glucoregulatory actions in patients with T2DM. DPP-4 inhibitors are weight neutral. A growing understanding of the roles of incretin hormones in T2DM may further clarify the application of incretin-based treatment strategies.
Original language | American English |
---|---|
Journal | Cleveland Clinic Journal of Medicine |
Volume | 76 |
State | Published - Dec 1 2009 |
Keywords
- adamantane
- blood glucose
- diabetes mellitus
- dipeptides
- dipeptidyl-peptidase IV inhibitors
- glucagon-like peptide 1
- glutaminase
- homeostasis
- humans
- hypoglycemic agents
- incretins
- intracellular signaling peptides and proteins
- peptides
- pyrazines
- signal transduction
- triazoles
- type 2
- venoms