The Effects of Caffeic Acid Phenethyl Ester (Cape) on Oxidative Stress and Hypoxia

Sarah Martin, Andrew Castellano, Chijioke Uzoaru, Jonathan Lim, Nicholas Carvis, Peter Wieczorek, Robert Barsotti, Lindon H. Young, Qian Chen

Research output: Contribution to conferencePresentation

Abstract

Oxidative stress has been implicated in pathogenesis of hypoxia and ischemia/reperfusion (I/R) injury. In previous studies, we have shown that the antioxidant CAPE exerted cardioprotection in an isolated rat heart I (30 min)/R (60 min) injury model. In this study, we further evaluated the effects of CAPE on oxidative stress and hypoxia-induced cell damage. We evaluated the inhibition of absorbance in the phorbol 12-myristate 13-acetate (30 nM) induced superoxide production spectrophotometrically in isolated rat neutrophils via reduction of exogenous cytochrome C. We found that CAPE (0.5 µM- 40 µM; n=4-13) reduced phorbol 12-myristate 13-acetate induced neutrophil superoxide release dose-dependently from 29±3% to 95±2%. In a rat hind limb I (30 min)/R (60 min) model, blood hydrogen peroxide levels serves as an indicator of blood oxidative stress and was measured in real-time via a hydrogen peroxide microsensor (100 μm) inserted into both femoral veins (one served as sham, the other as I/R). We found that in the control group, I/R significantly increased blood hydrogen peroxide levels to 2.1±0.8 μM relative to the sham limb at 60 minutes reperfusion when saline was given at the beginning of reperfusion (n=5). By contrast, CAPE when given at reperfusion (40 µM, n=5) significantly reduced blood hydrogen peroxide levels from 30 min reperfusion and throughout the rest of experiment (p

This study was supported by Division of Research and Department of Bio-Medical Sciences at Philadelphia College of Osteopathic Medicine.

Original languageAmerican English
StatePublished - May 3 2017

Disciplines

  • Life Sciences
  • Medicine and Health Sciences

Cite this