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TRANSLATIONAL PHYSIOLOGY
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Hatcher, Cathy J., Nata Y. S.-G. Diman, Min-Su Kim, David
Pennisi, Yan Song, Marsha M. Goldstein, Takashi Mikawa, and
Craig T. Basson. A role for Tbx5 in proepicardial cell migration
during cardiogenesis. Physiol Genomics 18: 129–140, 2004. First
published May 11, 2004; 10.1152/physiolgenomics.00060.2004.—
Transcriptional regulatory cascades during epicardial and coronary
vascular development from proepicardial progenitor cells remain to be
defined. We have used immunohistochemistry of human embryonic
tissues to demonstrate that the TBX5 transcription factor is expressed
not only in the myocardium, but also throughout the embryonic
epicardium and coronary vasculature. TBX5 is not expressed in other
human fetal vascular beds. Furthermore, immunohistochemical anal-
yses of human embryonic tissues reveals that unlike their epicardial
counterparts, delaminating epicardial-derived cells do not express
TBX5 as they migrate through the subepicardium before undergoing
epithelial-mesenchymal transformation required for coronary vascu-
logenesis. In the chick, Tbx5 is expressed in the embryonic proepi-
cardial organ (PEO), which is composed of the epicardial and coro-
nary vascular progenitor cells. Retrovirus-mediated overexpression of
human TBX5 inhibits cell incorporation of infected proepicardial cells
into the nascent chick epicardium and coronary vasculature. TBX5
overexpression as well as antisense-mediated knockdown of chick
Tbx5 produce a cell-autonomous defect in the PEO that prevents
proepicardial cell migration. Thus, both increasing and decreasing
Tbx5 dosage impairs development of the proepicardium. Culture of
explanted PEOs demonstrates that untreated chick proepicardial cells
downregulate Tbx5 expression during cell migration. Therefore, we
propose that Tbx5 participates in regulation of proepicardial cell
migration, a critical event in the establishment of the epicardium and
coronary vasculature.

vasculature; epicardium; cardiac development

T-BOX TRANSCRIPTION FACTORS play critical roles in cardiovascu-
lar development. Mutations in the human TBX5 gene cause
abnormal cardiac morphogenesis in the context of autosomal
dominant Holt-Oram syndrome (3, 32). Investigation of altered
Tbx5 gene dosage in several animal models has demonstrated
defects in cardiac septation and myocardial growth and devel-
opment similar to those observed in human individuals with
Holt-Oram syndrome (6, 10, 23, 34). Normal cardiogenesis

may reflect local myocardial balances between expression of
T-box genes (57). Recent studies have also implicated T-box
transcription factors in establishment of vascular structure.
Murine studies demonstrated a role for Tbx1 in aortic arch
development, and loss of human TBX1 may contribute to
congenital cardiovascular abnormalities in patients with Di-
George syndrome who have chromosome 22q deletions en-
compassing the TBX1 gene (19, 27, 36, 46). The zebrafish
T-box gene hrT, a homolog of chick and mouse Tbx20, is not
only required for normal myocardial development and cardiac
looping, but also for formation of the dorsal aorta (25, 28, 29,
45, 66). Expression analyses suggest a potential role for Tbx18
in epicardial and vascular development, since this gene is
highly expressed in the proepicardial organ (PEO) and the
epicardium (28); both of these structures contribute to coronary
vasculogenesis.

The PEO, a grape-like cluster of vesicles, comprises a
discrete organ in the chick and a portion of the septum
transversum in mammals. In the chick, the PEO initially forms
as an outgrowth of the dorsal wall of the intra-embryonic
coelom adjacent to the developing liver and becomes visible at
the sinoatrial pole of the heart at Hamburger-Hamilton (HH)
stage 13 (21). Each vesicle of the PEO is composed of multiple
mesothelial cells, surrounding a fluid-filled lumen. By HH
stage 18, the PEO contacts myocardium via villous projections
forming tissue bridges. Proepicardial cells subsequently mi-
grate over the myocardium to form the pericardium and the
epicardial monolayer (42). Between HH stages 19–23, some
epithelial cells migrate out of this layer into the subepicardial
matrix and nascent myocardium. These cells undergo an epi-
thelial-to-mesenchymal cell transformation (EMT) that con-
tributes both to valvulogenesis in the endocardial cushions (18)
and to differentiation of cardiac fibroblasts, endothelial cells,
and coronary smooth muscle cells, all of which can participate
in formation of the coronary vasculature (49).

Genetic cues originating in the myocardium are presumed to
regulate the differentiation and localization of the epicardial
mesenchyme and coronary blood vessels. Several genes, in-
cluding the transcription factors Tbx18 (28), Gata4 (53), and
Fog2 (12, 65, 69), are expressed in the epicardium and coro-
nary vasculature, but the molecular pathways that initiate and
propagate epicardial EMT and coronary vasculogenesis remain
to be delineated. Data suggest fine regulation of a balance
among growth factors such as FGF and TGF� isoforms as well
as VEGF. Cell-cell and cell-matrix interactions are required,
since this process requires connexin-43, VCAM-1, and �4-
integrins (31, 33, 73). In addition, endothelin-mediated com-
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munication between epicardial-derived cells (EPDCs) and
primitive cardiomyocytes contributes to Purkinje fiber devel-
opment (67). Transcriptional regulation during epicardial EMT
involves WT-1, Ets transcription factors, and probably GATA
transcription factors, whose roles are suggested by a require-
ment for Fog2 (12, 63, 69). A functional role for T-box
transcription factors in epicardial EMT and coronary vasculo-
genesis has not yet been defined.

In this study, we demonstrate that human TBX5 is expressed
in the coronary vasculature during embryogenesis and that
variations in human TBX5 expression during cardiac morpho-
genesis correlate with activation of EPDC migration. We
further analyzed the contribution of Tbx5 to proepicardial cell
activity during chick cardiogenesis. Chick Tbx5 is expressed in
the PEO, and overexpression of human TBX5 inhibits cell
migration out of the PEO and thereby impairs proepicardial
cell contribution to the coronary vasculature. Proepicardial cell
migration is altered by other perturbations in Tbx5 dosage,
since antisense-mediated inhibition of Tbx5 translation also
inhibits proepicardial cell migration. Notably, however, non-
genetically engineered proepicardial cells repress Tbx5 expres-
sion during cell migration. Therefore, we propose that TBX5
can contribute to embryonic events that regulate proepicardial
cell migration and thereby impact upon epicardial and coronary
vascular development.

MATERIALS AND METHODS

Retroviral TBX5 constructs and infection of chick embryos in ovo.
The CXIZ retrovirus and construction of the derivative wt-TBX5-
CXIZ and Gly80Arg-TBX5-CXIZ replication-defective retroviruses,
encoding wild-type and mutant TBX5 isoforms, respectively, have
been previously described (23). Replication-defective viruses were
propagated and titers were assayed per published protocols (23, 47,
67, 71). Ten to 100 viral particles in �10 nl containing 100 �g/ml
Polybrene were pressure-injected in ovo into the PEO. PEO pressure
injection was usually associated with a small amount of leakage of
retrovirus into the adjacent myocardium. Eggs were resealed with
Parafilm, and the embryos were maintained at 38°C until euthanasia.
Euthanized embryos were fixed with 4% paraformaldehyde and
stained overnight for �-galactosidase activity with X-Gal.

PEO explant, transfection, and cell culture. PEOs were microdis-
sected from embryonic chicks at HH stages 16–18 prior to migration
of the PEO over the myocardium. They were carefully trimmed to
ensure the absence of any possible contaminating myocardium. Ex-
planted PEOs were maintained in culture at 37°C, 5% CO2 with
DMEM media supplemented with 10% fetal bovine serum (FBS) and
2% chick serum for �72 h. For experiments involving overexpression
of human TBX5, isolated PEOs were either infected with retrovirus or
transfected with pEGFP-C1-TBX5 plasmid (11) or pEGFP-C1-
TBX20 plasmid. To construct pEGFP-C1-TBX20 plasmid, human
TBX20 1,287-bp cDNA was reverse transcribed (OneStep RT-PCR;
Qiagen) from archived 14 wk human fetal heart (22) with primer
hTBX20F (5�-ATTAGAATTCATGCTGTTCTTTCCAGATCTTT-
CCTTG-3�) and hTBX20R (5�-TAATTCTAGATCATACAAATG-
GCGTCATCACAG-3�) and cloned into the EcoRI and XbaI restric-
tion enzyme sites (shown in bold) in pEGFP-C1 plasmid (Clontech).
Integrity of all constructs was confirmed by automated sequencing on
an ABI 3100 (Applied Biosystems).

For retroviral infections, isolated PEOs were infected for 24 h with
�1 � 106 virions of CXIZ-derived retroviruses in the presence of 10
�g/ml Polybrene followed by continued culture for a further 48 h in
virus-free media. For the plasmid transfections, PEOs were isolated,
allowed to attach to the cell culture dish for 4 h, then transiently
transfected with either pEGFP-C1, pEGFP-C1-TBX5, or pEGFP-C1-

TBX20 in Opti-MEM media (GIBCO) using Lipofectamine Plus
reagent per the manufacturer’s instructions (Invitrogen). The cells
were loaded 24 h later with Hoechst 33362 according to manufactur-
er’s protocols (Sigma) and visualized by fluorescence microscopy
(Nikon Diaphot 200) using SpotFinder software.

To study the consequences of gene knockdown, isolated PEOs
were cultured in 12-mm wells and transfected with morpholino (MO)
antisense oligomers for cTbx5, cTbx20, or the corresponding inverted
(INV) sequences of each morpholino, as follows: cTbx5-MO
(5�-GCCTTCCTCGGTGTCCGCCATGTTA-3�), cTbx20-MO (5�-
CGGTGTGTACTCCATGGCGAGCCCC-3�), cTbx5-INV (5�-
ATTGTACCGCCTGTGGCTCCTTCCG-3�), or cTbx20-INV
(5�-CCCCGAGCGGTACCTCATGTGTGGC-3�) Each oligomer
was covalently labeled with Lissamine (sulforhodamine B) fluo-
rescent dye and synthesized to be used with the “Special Delivery”
ethoxylated polyethylamine (EPEI) system (Gene Tools). The
cTbx5-MO and cTbx20-MO sequences were designed to include
sequence (�4 to 	21 and �10 to 	15) flanking the cTbx5 and
cTbx20 translational start sites, respectively. Morpholino-modified
antisense oligomers were transfected into PEOs according to the
manufacturer’s protocols and as previously described (51). Fluo-
rescent microscopy of cultures permitted identification of trans-
fected cells. After 3 h, transfection media was changed to fresh
DMEM growth media.

Number of cells migrating out of PEOs after 24, 48, and 72 h of
culture were determined by direct visualization with light microscopy.
�-Galactosidase staining marked retrovirus-infected cells, and Lissa-
mine fluorescence marked antisense oligomer transfected cells. For
antisense studies, distribution of PEO cells was determined as the
number of cells within 200-�m concentric rings surrounding the
residual PEO explant. Statistical comparisons were made by ANOVA
analysis with GB-STAT software.

Primary cultures of PEO cells were prepared using the previously
described protocol for embryonic heart dispersion (30), with the
exception of only one 15-min digestion with 0.5 mg/ml type II
collagenase at 37°C (Worthington). To assess proliferation rates of
retrovirus-infected cultured PEO cells, PEO cells were allowed to
adhere to the culture surface for 3 h. For some studies, they were
infected for 8 h with retroviruses and then grown for a further 13-h
period in virus-free media. For other studies, cultured proepicardial
cells were transfected with morpholino-modified antisense oligomers
as described above. Twenty-four hours after plating collagenase-
digested PEO cells, cultures either were used for RNA preparation or
were fixed in 4% paraformaldehyde and underwent immunohisto-
chemical staining with anti-�-galactosidase (ICN) and anti-PCNA
(DAKO) antibodies using the LSAB2 kit with the EnVision Dou-
blestain System (DAKO) per the manufacturer’s instructions and as
previously described (23). The fraction of PCNA-positive retrovirus-
infected cells (marked by �-galactosidase positivity) was determined
by direct visualization under light microscopy in triplicate samples.
Statistical comparisons were made by ANOVA analysis with GB-
STAT software.

RT-PCR of isolated PEO. Total RNA was isolated from either
whole hearts or PEOs of HH stage 16–18 chicks with TRIzol per the
instructions of the manufacturer (Invitrogen). In some cases, the
explanted PEOs were maintained in culture for 72 h during which
time some proepicardial cells migrated out of the explant. The initial
PEO explant was detached from the dish and removed, leaving
surrounding migrating PEO-derived cells. These PEO-derived cells
were trypsinized, pelleted by centrifugation, and total RNA was
isolated from them as well as from the removed PEO explant.
RT-PCR for chick Tbx5 was performed on both populations of cells.
To analyze chick Tbx5 mRNA expression by RT-PCR, 500 ng RNA
were reverse transcribed and subsequently amplified by the OneStep
RT-PCR kit (Qiagen) under the following conditions: 95°C for 30 s,
55°C for 45 s, 72°C for 1 min, for 30 cycles; followed by 72°C for 10
min. The primers used to amplify this 887-bp product were as follows:
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cTbx5F (5�-CTGTGGCTGAAATTTCACGAGGTG-3�) and cTbx5R
(5�-GGTAACTGGACCTGTACAAAGGAT-3�). Chick GAPDH
mRNA expression was also analyzed in the same cell populations
using primers 5�-ATGATTCTACACACGGACACTTCA-3� and 5�-
CTCATTGTCATACCAGGAAACAAG-3�. PCR products were ana-
lyzed on 2% agarose gels.

Quantitative RT-PCR. Quantitative RT-PCR was performed to
assess expression levels of candidate chick genes in primary proepi-
cardial cell cultures. Total RNA was isolated from cultures with
TRIzol (Invitrogen), and cDNA was prepared from 1 �g of total RNA
with the iScript cDNA synthesis kit (Bio-Rad). This cDNA served as
template for real-time PCR studies using the Quantitech SYBR Green
kit (Qiagen) and a Cepheid Smart Cycler. Reaction conditions were
95°C for 15 min and then 95°C for 30 s, 55°C for 30 s, and 72°C for
30 s, for 45 cycles. Genes analyzed and primers used were cGAPDH
(5�-TGGGTGTCAACCATGAGAAATATG-3�; 5�-ACCTCTGTCA-
TCTCTCCACAGCTT-3�), cTbx18 (5�-GTGCGCTGTACGGATA-
TAACTTTT-3�; 5�-CTAAGTAAGTGCACTCCTTCCACA-3�), and
cTbx20 (5�-AATTCGTTGAGAAGTCCTCCTG-3�; 5�-CAGGAG-
ATTTTGGCCATCTCC-3�). Primer pairs were tested in standard
PCR and shown to amplify a single product by agarose gel electro-
phoresis prior to use in real-time PCR assays. All real-time PCR
reactions were matched with non-reverse-transcribed control reac-
tions. Data from six replicate cultures were analyzed per published
protocols (13).

In vitro isolated cell migration assays. Cell migration was mea-
sured using a quantitative assay of sheet migration as previously
described (4, 5, 58) that was modified. Briefly, 1.25 � 106 D17 canine
osteosarcoma cells were infected for 48 h with 107 virions of CXIZ-
derived retrovirus in the presence of 10 �g/ml of Polybrene. Type I
collagen-coated dishes were prepared as previously described (58).
Retrovirus-infected D17 cells were trypsinized and resuspended in
DMEM with 7% FBS to which 10 mM hydroxyurea was added to
inhibit cell proliferation. One million cells were plated into the 10-cm
central circular core of a 32-cm stainless steel circular fence (Yale
Department of Biomedical Engineering) placed in a type I collagen-
coated dish. After the cells attached to the dish overnight, the fence
was removed. The cells were gently washed with PBS and allowed to

migrate radially in culture media containing hydroxyurea. After mi-
grating for 10 days, �-galactosidase-positive cells were visualized as
previously described (23). Dishes were imaged on a flatbed scanner,
and the diameter of the migrated cells was outlined and measured
(Multi-Analyst software, Bio-Rad). The migration area was calculated
as the diameter of cells after 10 days of migration minus the diameter
of cells immediately following removal of the fence prior to the
beginning of the migration assay. This value was expressed as square
millimeters. Samples were analyzed in 25–30 replicate dishes, and
statistical comparisons were made by ANOVA with GB-STAT soft-
ware.

RNA probes and in situ hybridization. cDNA of cTbx5 was syn-
thesized from HH stage 16–18 chick heart RNA by RT-PCR using the
previously named primer pair, cTbx5F and cTbx5R. The PCR product
was TA-cloned into the pCRII vector (Invitrogen) and sequenced in
both directions. Sense and antisense digoxigenin-labeled RNA probes
were transcribed from XhoI and SpeI linearized plasmids, respec-
tively, according to the manufacturer’s instructions (Roche). Whole
mount in situ hybridization on HH stage 16–18 chick embryos was
performed as previously described (67). Following color develop-
ment, embryos were paraffin embedded and sectioned at 10 �m as
previously described (48).

Immunohistochemistry of human tissue. Human cardiac tissue was
obtained as waste surgical pathology material from therapeutic abor-
tions of 10 embryos at 10–15 wk gestation, with informed consent and
approval of the Cornell Committee on Human Rights on Research,
and tissues were prepared for immunohistochemistry as previously
described (22). TBX5 protein was detected on 5-�m sections, which
were analyzed and imaged on a Nikon Microphot microscope.

RESULTS

TBX5 expression in the human epicardium and coronary
vasculature and in the chick PEO. Human embryonic tissue
(10–15 wk of gestation) was analyzed by immunohistochem-
istry for TBX5 expression (Fig. 1) with a previously charac-
terized (22) antibody to TBX5 that is directed against a specific
TBX5 sequence carboxyl to the TBX5 T-box. In addition to

Fig. 1. Immunohistochemical detection of TBX5 in human
embryonic heart and lung. Immunostaining for TBX5 in 15 wk
of gestation human embryonic left ventricle (A) and lung (B). A:
in the embryonic heart, TBX5 is expressed not only in the
myocardium, but also in the smooth muscle and endothelial
cells of coronary arteries (a) and veins (v). Vascular endothelial
(endo) and smooth muscle (vsmc) cells are indicated as well as
myocardial cardiomyocytes (myo). B: in the embryonic lung,
no staining is seen in the vasculature; pulmonary arteriole is
shown (a). C: no staining is observed in the aorta (ao) and the
nascent outflow tract, although staining is observed in adjacent
atrial myocardium (�). D: no staining is observed in the distal
phalanx of the great toe despite staining of osteoblasts in the
thumb (inset) costained in the same paraffin section. Bars 
 20
�m.
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previously described (22) expression in cardiomyocytes and
atrioventricular nodal cells, marked staining for TBX5 was
observed in the epicardium and coronary vasculature. TBX5
expression was observed in the coronary arterial and venous
endothelium as well as in coronary arterial smooth muscle cells
(Fig. 1A). TBX5 expression was not evident in vascular cells
outside of the heart (Fig. 1, B and C), i.e., aorta, pulmonary
artery, lungs, liver, kidney, and skeletal muscle. Absence of
staining with the antibody used in the developing aorta (Fig.
1C) and foot (Fig. 1D), where TBX20 and TBX18, respec-
tively, are known to be expressed (28, 29, 45), confirmed that
the anti-TBX5 antibody used does not cross-react with these
other T-box genes that are expressed in some vascular cells. As
demonstrated previously, specificity of the antibody was veri-
fied by reacting tissue sections with anti-TBX5 antibody pread-
sorbed with the TBX5 peptide immunogen; no staining was
observed in these sections (data not shown) (22).

Further analyses of human embryonic tissues also suggested
EPDC inactivation of TBX5 expression in association with cell
migration. During cardiogenesis, a subpopulation of EPDCs
migrates out of and delaminates from the epicardium and then
populates the subepicardial matrix as these EPDCs interact
with myocardial cells and undergo EMT (18, 49). We immu-

nohistochemically examined human TBX5 expression in the
epicardium and subepicardium during human fetal cardiac
development. Compared with the marked TBX5 staining in the
static epicardium or intramyocardial vasculature, the subepi-
cardial layer of migrating EPDCs was devoid of TBX5 staining
(Fig. 2); previous studies by others have suggested that this
area is composed of delaminating EPDCs (18, 49).

Given the common developmental origins of the coronary
vasculature and epicardium and the critical role of these cell
populations in the establishment of the cardiac conduction
system (18, 49), we sought to determine in the chick whether
cTbx5 is expressed in the PEO. In situ hybridization with a
chick Tbx5-specific riboprobe revealed specific Tbx5 expres-
sion in the developing chick PEO (Fig. 3) similar to previous
findings of Tbx5 in the murine septum transversum (62).
Notably, expression of Tbx5 in the PEO and primitive ventri-
cles is lower compared with that observed in the primitive atria
and wing buds. Heterogeneity of Tbx5 expression in the PEO
was also observed, with the aspect in contact with the primitive
atrium exhibiting the highest level of expression. In addition,
PEOs, myocardium, and tail bud were microdissected from 14
HH stage 16–18 chick embryos, and RNA samples were
prepared. RT-PCR demonstrated that cTbx5 is expressed not

Fig. 2. TBX5 is not expressed in the subepicardium of the embryonic human heart. Immunostaining for TBX5 was performed in
15 wk of gestation human heart. Shown are sections through the lateral wall of the embryonic left ventricle (A and B) and through
the right atrial free wall (C and D). Immunohistochemistry with anti-TBX5 is shown in A and C. Although TBX5 is expressed in
epicardial, vascular, and myocardial cells, the subepicardium (�), comprised of delaminating epicardial-derived cells (EPDCs) that
will ultimately form the nonmigrating vasculature, is devoid of TBX5 expression. Labels indicate epicardium (epi), myocardium
(myo), arteriole (a), vein (v), vascular endothelial cells (endo), and vascular smooth muscle cells (vsmc). Hematoxylin and eosin
staining of parallel sections (B and D) demonstrates the cellularity of the subepicardium. Bar 
 25 �m.
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only in the myocardium but also in the PEO (Fig. 3). No cTbx5
expression was observed in the tail bud.

Overexpression of TBX5 in the PEO. To determine whether
regulation of Tbx5 dose plays a role in PEO development and
its progenitors, we used retrovirus-mediated transgenesis to
augment Tbx5 expression in the PEO during chick develop-
ment. CXIZ retroviruses encoding either �-galactosidase alone
or in addition to human TBX5 isoforms (wild-type or
Gly80Arg mutant) were microinjected into the PEO of HH
stage 16–18 embryonic chicks in ovo. Embryos were killed and
studied at embryonic day 15 (E15) by whole mount staining for
�-galactosidase (Fig. 4) and light microscopy (Fig. 5). CXIZ-
injected embryos exhibited �-galactosidase-positive cells in
both the epicardium (Figs. 4, A–C) as well as the vascular
smooth muscle and surrounding endothelium of the coronary
vasculature (Figs. 5, A and B). Mosaic staining confirmed
previous findings (23, 49, 71) that this retroviral strategy
results in transgenesis of a portion of the targeted cells. Al-
though epicardium and coronary vasculature did form in wt-
TBX5-CXIZ-injected embryos (Fig. 4F), we did not observe
significant incorporation of �-galactosidase-positive cells into
these structures (Figs. 5, C and D). Microinjection of the

inactive mutant Gly80Arg-TBX5-CXIZ (23) revealed a pattern
of �-galactosidase-positive cell expression similar to that
found in CXIZ-injected embryos (Fig. 4, D and E). Therefore,
we concluded that overexpression of biologically active TBX5
specifically inhibits incorporation of proepicardial cells into
epicardium and coronary vasculature.

Does TBX5 modulate proepicardial cell proliferation and
migration in vitro? Because our previous studies (23) had
demonstrated that TBX5 can act as a growth-arrest signal to
inhibit the proliferation of several cell types including D17
cells, MEQC myc-transformed avian cardiomyocyte-like cells
(26), and embryonic chick cardiomyocytes, we considered the
possibility that TBX5 overexpression might inhibit the prolif-
eration of a subset of proepicardial cells within the PEO and
thereby prevent their clonal expansion and further incorpora-
tion into PEO-derived structures. However, immunostaining
for PCNA in PEOs infected with either CXIZ or wt-TBX5-
CXIZ both revealed evidence of proliferation in virtually all
cells. To further quantitatively determine whether TBX5 over-
expression altered proepicardial cell proliferation, primary cul-
tures of proepicardial cells were established by disaggregating
PEOs microdissected from HH stage 16–18 chick embryos.

Fig. 3. Analysis of cTbx5 expression in the embryonic chick heart and proepicardial organ (PEO). A: total RNA was prepared from
Hamburger-Hamilton (HH) stage 16–18 embryonic chick myocardium (lane b), PEO (lane c), and tail bud (lane d). The 887-bp
and 806-bp segments of the chick Tbx5 and GAPDH genes, respectively, were amplified by RT-PCR. cTbx5 is expressed in both
the myocardium and PEO, but not in the tail bud. Lane a is a negative RT-PCR control in which RNA was omitted from the sample
undergoing amplification. B: in situ hybridization analysis of HH stage 17 chick embryo with an antisense cTbx5-specific riboprobe.
cTbx5 mRNA expression was observed in the PEO (arrow) as well as in the wing bud (w) and heart. C: embryos hybridized with
a sense cTbx5 riboprobe showed no staining of the PEO (arrow). D: cross-sectional analysis of an HH stage 17 chick embryo
confirmed cTbx5 expression in the PEO, as well as in the wing buds (w) and primitive atrium (a) and ventricle (v).

Fig. 4. Retrovirus-mediated expression of wild-type and mutant human TBX5 in embryonic chick PEO during heart development.
CXIZ (A–C), Gly80Arg-TBX5-CXIZ (D and E), and wt-TBX5-CXIZ (F) retroviruses were microinjected into chick PEOs in ovo
at HH stage 16–18. Embryos were euthanized at embryonic day 15 (E15), and whole mounts were stained (blue) for
�-galactosidase. Microscopic inspection revealed widespread expression of the transgene in the epicardial cell layer (�) and
underlying coronary vessels (arrows) in the CXIZ-infected (A–C) and Gly80Arg-TBX5-CXIZ-infected (D and E) hearts. F: in
wt-TBX5-CXIZ-infected hearts, staining of the epicardium and coronary vasculature was not detected. In all cases, minimal
myocyte expression of the transgene (m) is observed due to leakage of the retrovirus into the myocardium during pressure
microinjection and thus verifies both the infectivity of the retrovirus and expression of the transgene. Bar shown in A 
 800 �m
(for A and F), or 400 �m (for B and C), or 100 �m (for D and E).
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Cultures were infected with CXIZ, wt-TBX5-CXIZ, or
Gly80Arg-TBX5-CXIZ retroviruses and then fixed and immu-
nostained for PCNA within 24 h of initial proepicardial cell
plating. These studies demonstrated no significant difference in
the fraction of PCNA-positive cells regardless of TBX5 iso-
form overexpression (data not shown). Quantitation of these
studies is shown in Fig. 6A.

Since our experiments suggested that TBX5 does not sig-
nificantly alter proepicardial cell proliferation, we tested the
hypothesis that TBX5 might inhibit proepicardial cell migra-
tion out of the PEO and thereby inhibit incorporation of
retrovirus-infected cells into the epicardium and coronary vas-
culature. Because it had been previously suggested that TBX5
regulation of cell migration might play a role in establishment
of the limb bud (2), we first sought to determine whether TBX5
inhibited in vitro migration of D17 cells. Osteosarcoma cell
activity in vitro has been previously utilized as an experimental
model of bone formation (44, 61). We had previously shown
that TBX5 inhibited D17 cell proliferation, but recent data has
suggested that the effects of TBX5 on cell migration and cell
proliferation might contribute to limb development (2). D17
cells were infected with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-
TBX5-CXIZ retroviruses. Infected cells were allowed to mi-
grate in culture for 10 days in the presence of hydroxyurea, a
potent inhibitor of cell proliferation. Quantification of cell
migration (Fig. 6B) revealed that wt-TBX5-CXIZ-infected
D17 cells migrated significantly less than D17 cells infected
with CXIZ or Gly80Arg-TBX5-CXIZ (P � 0.0001). To de-
termine whether TBX5-mediated inhibition of cell migration
was cell-autonomous, we assessed the migration of CXIZ-
infected D17 cells cocultured with D17 cells infected with
wt-TBX5-CXIZ. Cultures analyzed contained 0, 14, or 41%
wt-TBX5-CXIZ-infected D17 cells, so the majority of cells at
the migrating front would be CXIZ-infected D17 cells. After
10 days of coculture, we did not observe (Fig. 6C) significant
alterations (P 
 0.9) in D17 migration regardless of the
amount of wt-TBX5-CXIZ-infected D17 cells present. There-
fore, we concluded that TBX5 inhibited D17 cell migration in
vitro in a cell-autonomous fashion.

Because D17 osteosarcoma cell behavior may not mimic
proepicardial cell behavior, we explored the consequences of
TBX5 overexpression on proepicardial cell migration. Ex-
planted PEOs were either infected in culture with CXIZ,
wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses for
24 h and maintained for a further 48 h in virus-free media, or
they were transfected with pEGFP-C1 or pEGFP-C1-TBX5 for
4 h and then maintained in normal media for a further 24 h.
Migration of cells was assessed by �-galactosidase staining in
retrovirus-infected cultures or by fluorescence microscopy in
plasmid-transfected cultures. As previously described (30),
proepicardial cells migrated out of the PEO in a radial fashion
during culture of explanted PEOs. In CXIZ- and Gly80Arg-
TBX5-CXIZ-infected cultures, 88 and 91%, respectively, of
�-galactosidase-positive cells had migrated out of the explant
(Fig. 7A). By contrast, only 25% of �-galactosidase-positive
cells were seen in the wt-TBX5-CXIZ migrating population,
and most remained within the explanted PEO (Fig. 7A). Nota-
bly, even though a minority of proepicardial cells were infected
by the retrovirus, there was no evidence of inhibition of
migration of noninfected cells out of the PEO. In cultures
transfected with pEGFP-C1 plasmid alone, 81% of EGFP-
positive cells migrated out of the explant (Fig. 7B). However,
in pEGFP-C1-TBX5-transfected cultures, only 32% of EGFP-
positive cells migrated out of the explant, while the majority
remained within the explanted PEO (Fig. 7C). Not only do
these data support the hypothesis that TBX5 overexpression
inhibits proepicardial cell migration, but these data also con-
firm that this effect is cell autonomous.

We further considered whether TBX5 activity is essential for
proepicardial cell migration. To evaluate this hypothesis, we
determined the consequences of loss of cTbx5 activity on
proepicardial cell migration in vitro by treatment with cTbx5
morpholino antisense oligonucleotides (cTbx5-MO) derived
from sequences flanking the cTbx5 consensus Kozak sequence.
Similar oligonucleotides have been used by Ng et al. (54), Ahn
et al. (2), and Garrity et al. (16) to inhibit Tbx5 translation
during zebrafish pectoral limb bud and heart development.
PEO explants were transfected with cTbx5-MO or a control

Fig. 5. Histological detection of retrovirus-mediated human
TBX5 expression in ovo. Histological sections of embryonic
chick hearts stained for �-galactosidase activity after being
infected with CXIZ (A and B) or wt-TBX5-CXIZ (C and D)
retroviruses revealed expression of �-galactosidase in the
intimal endothelium and medial smooth muscle of the coro-
nary arteries in CXIZ-microinjected hearts. However, this was
undetectable in the wt-TBX5-CXIZ hearts. Bar 
 20 �m.
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antisense oligomer comprising the same sequence, but in an
inverted orientation (cTbx5-INV). Since both oligomers were
covalently tagged with Lissamine, transfection efficiency was
assessed by fluorescent microscopy, and 40–50% of cells
incorporated both oligomers. Proepicardial cell migration was
assessed after 24 h in culture. In explants treated with either
cTbx5-MO or cTbx5-INV, we observed no change in migra-
tion of proepicardial cells that did not take up the antisense
oligomers. However, migration of cTbx5-MO-transfected pro-
epicardial cells was markedly inhibited compared with the
migration of cTbx5-INV-transfected cells; most cTbx5-MO
proepicardial cells failed to migrate out of the explanted PEO
(Fig. 8). These studies further suggest that not only is the
contribution of Tbx5 to cell migration cell autonomous, but
also that regulation of Tbx5 expression is required for normal
proepicardial cell migration.

TBX5 overexpression inhibits proepicardial cell migration
in vivo. To determine whether TBX5 has effects in vivo similar
to those effects it has on cell migration in vitro, we analyzed
the fate of TBX5-overexpressing proepicardial cells in the
developing chick in vivo (Fig. 9). PEOs of HH stages 16–18
embryonic chicks were microinjected with CXIZ, Gly80Arg-
TBX5-CXIZ, or wt-TBX5-CXIZ retrovirus, and the embryos
were euthanized and stained for �-galactosidase activity at 8,
24, and 48 h following microinjection. In both CXIZ- and
wt-TBX5-CXIZ-infected embryos, �-galactosidase staining
was evident in the PEO by 8 h postmicroinjection. By 24 h
postmicroinjection, CXIZ-infected proepicardial cells were
noted to have begun to migrate over the surface of the looping
heart and, by 48 h, were observed to incorporate into nascent
epicardium and vascular structures. Similar data was obtained
for Gly80Arg-TBX5-CXIZ-infected cells (data not shown).
However, at these 24 and 48 h time points, wt-TBX5-CXIZ-
infected proepicardial cells remained in the PEO and failed to
migrate over the heart surface.

Native Tbx5 expression in migrating proepicardial cells.
Our studies suggested that disruption of Tbx5 signaling in
genetically engineered cells perturbs their capacity for migra-
tion. We therefore hypothesized that native Tbx5 expression
might be dynamically regulated in cells that alternate between
stationary and migratory states during development. To ad-
dress this, we compared cTbx5 expression in chick proepicar-
dial cells that were stationary or migrating. PEOs were ex-
planted from 81 HH stage 16–18 chick embryos and main-
tained in organ culture for 72 h, by which time a subpopulation
of proepicardial cells had migrated out of the PEO onto the
culture dish while the rest remained within the PEO. From each
culture, the residual, nonmigrating PEO was removed by mi-
crodissection, and then the migrating proepicardial cells were
removed from the dish by trypsinization. RT-PCR analyses of
cTbx5 expression were performed on RNA samples from both
populations of cells. These studies revealed that like HH stage
16–18 PEOs in vivo (Fig. 3), the nonmigrating cells from
cultured PEOs continued to express cTbx5 (Fig. 10). However,
migrating proepicardial cells no longer expressed detectable
levels of cTbx5 (Fig. 10). Thus migration of proepicardial cells
out of the PEOs in this culture model was associated with
inactivation of cTbx5 expression.

Do Tbx18 and Tbx20 contribute to Tbx5 effects on proepi-
cardial cell migration? Concomitant alterations in the expres-
sion levels of multiple T-box transcription factors, e.g., Tbx5,

Fig. 6. Effect of TBX5 overexpression on proepicardial cell proliferation and
D17 cell migration in vitro. A: primary cultures of proepicardial cells were
infected with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses
and immunostained with anti-PCNA 24 h after initial plating to determine the
fraction of proliferating cells. No significant effect of TBX5 on PEO cell
proliferation was observed (P 
 0.532). B: migration rates of D17 cells
infected with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses
were determined during a 10-day sheet migration assay. Compared with CXIZ
and Gly80Arg-TBX5-CXIZ retroviruses, infection of D17 cells with wt-
TBX5-CXIZ significantly inhibits migration (P � 0.0001). C: D17 cells
infected with CXIZ were cocultured with D17 cells infected with wt-TBX5-
CXIZ at varied fractions and subjected to a 10-day sheet migration assay.
Increasing proportions of wt-TBX5-CXIZ-infected D17 cells produced no
significant differences (P 
 0.9) in D17 migration.

135TBX5 AND PROEPICARDIAL MIGRATION DURING CARDIOGENESIS

Physiol Genomics • VOL 18 • www.physiolgenomics.org

on M
arch 18, 2015

D
ow

nloaded from
 



Tbx2, Tbx3, and Tbx20, have been suggested to play a role in
myocardial development (10a, 57), and our observations of
proepicardial cell behavior may not be solely due to Tbx5 but
rather imbalances of several PEO T-box genes. Both Tbx18
and Tbx20 have been implicated in vascular development and
are expressed in the PEO/septum transversum (8, 28). We used
quantitative RT-PCR to determine whether proepicardial ex-
pression of Tbx18 and Tbx20 changed in response to Tbx5
knockdown via antisense inhibition of Tbx5 expression as
described above. Tbx18 expression was not significantly
changed in PEO cultures treated with cTbx5-MO compared
with those treated with cTbx5-INV (1.3 � 0.2 x). However,
Tbx5 knockdown was associated with a significant increase
(1.9 � 0.3 �) in Tbx20 expression. Recently, Plageman et al.
(57) suggested that maintenance of Tbx5 and Tbx20 balance
may be critical for myocardial development. To determine
whether proepicardial cell migration was similarly regulated,
we directly tested the effect of altered Tbx20 expression on
proepicardial cell migration. We studied the consequences of
both Tbx20 knockdown (using morpholino antisense oligonu-
cleotides) and Tbx20 overexpression (using pEGFP-C1-
TBX20 plasmids; see Fig. 7, A and D) on proepicardial cell
migration out of cultured PEO explants just as we had for
Tbx5. We found that 83% and 89% of proepicardial cells
subject to cTbx20 knockdown or TBX20 overexpression, re-
spectively, migrated out of the proepicardial explant. These
proportions were similar to the high proportion of migrating
cells seen in control cultures treated with inverted cTbx20
antisense oligomers (82%) or pEGFP-C1 plasmid (81%) but
significantly differed (P � 0.01) from the low proportion of

cells that migrated out of the proepicardial explant in cultures
treated with cTbx5 antisense oligomers (42%) or with pEGFP-
C1-wt-TBX5 (16%).

DISCUSSION

In this study, we demonstrate that TBX5 is expressed in the
PEO, which contains epicardial and coronary vascular progen-
itor cells, and that TBX5 inhibits proepicardial cell migration
in vitro and in vivo. Mosaic overexpression of TBX5 in the
PEO in vivo during cardiogenesis inhibits proepicardial cell
migration out of the PEO with consequent impaired incorpo-
ration of transgenic cells into the epicardium and coronary
blood vessels. Proepicardial cell migration in vitro is affected
by changes in TBX5 dosage and genetically engineered aug-
mentation or inhibition of TBX5 expression both inhibit pro-
epicardial cell migration. Furthermore, analyses of cultured
chick proepicardial cells and of human fetal tissues suggest that
physiological regulation of TBX5 expression may occur in
vivo in concert with both initiation and cessation of cell
migration during embryogenesis. Since we do not observe
TBX5 expression in migrating proepicardial cells, our studies
suggest that there may be distinct temporal requirements for
TBX5 and that our genetic manipulations impair proepicardial
cell migration by modifying TBX5 expression in the premi-
gratory cells of the PEO.

We have previously shown that TBX5 inhibits cardiomyo-
cyte proliferation during myocardial development (23). Our
data now extend the profile of TBX5 activity to include
regulation of migration and indicate that inhibition of migra-

Fig. 7. Effect of TBX5 overexpression on proepicardial cell
migration in vitro. The consequences of retroviral- or plasmid-
mediated overexpression of TBX5 in explanted PEOs were
studied. A: quantitative determination of proepicardial cell mi-
gration in vitro after infection with CXIZ retrovirus or retrovi-
rus encoding wt-TBX5 or Gly80Arg mutant TBX5. Significant
inhibition of migration by wild-type TBX5 but not by
Gly80Arg TBX5 was observed. B: a PEO explant transfected
with pEGFP-C1 is shown under phase microscopy. Most of the
transfected cells (green), visualized by fluorescent microscopy,
migrate out of the initial PEO explant, outlined in black. C:
most of the pEGFP-C1-wt-TBX5-transfected cells shown fail to
migrate out of the PEO explant. D: most of the pEGFP-C1-
TBX20-transfected cells shown migrate out of the PEO explant.
Bar 
 300 �m for B–D.
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tion by TBX5 is partially independent of this transcription
factor’s effects on cell proliferation. Analyses of PCNA ex-
pression in TBX5 transgenic chick proepicardial cells demon-
strate no effect of TBX5 on proepicardial cell proliferation.

Furthermore, unlike TBX5 inhibition of proliferation, TBX5
inhibition of migration is cell autonomous. Coculture of D17
cells with D17 cells genetically engineered to overexpress
TBX5 fails to modify their migration in vitro. Although TBX5

Fig. 8. Antisense suppression of cTbx5 in-
hibits proepicardial cell migration in vitro.
Fluorescence microscopy of proepicardial
explants 24 h after being transfected with
cTbx5-MO antisense oligonucleotide (A) or
the cTbx5-INV control oligonucleotide (B)
reveals that cTbx5 suppression prevents
treated cells from migrating out of the ex-
planted organ. Leading edges of migration
are shown, and direction of migration is
toward the top. Transfected cells (blue in A,
red in B) are detected by fluorescence mi-
croscopy. C: quantitative analysis demon-
strates that unlike cTbx5-INV-transfected
cells (blue) that migrate progressively out of
the proepicardial explant, cTbx5-MO-trans-
fected cells (red) largely remain in the PEO
explant, and concentric rings further from
the explant contain fewer and fewer cTbx5-
MO-transfected cells. Shown are the per-
centages of transfected proepicardial cells in
each culture that are located within the ex-
plant (i.e., 0 �m migrated) or at varying
distances outside the explant (1–200 �m,
201–400 �m, 301–600 �m, or 601–800 �m).

Fig. 9. Effect of TBX5 overexpression on
proepicardial cell migration in vivo. At 8 h
(A and D), 24 h (B and E), and 48 h (C and
F) following microinjection of PEOs in ovo
with CXIZ (A–C) or wt-TBX5-CXIZ (D–F)
retroviruses, chick embryos were euthanized,
fixed, and stained for �-galactosidase activ-
ity. A and D: �-galactosidase staining (ar-
rows) was evident in PEOs 8 h postmicroin-
jection, regardless of which retrovirus was
injected. B: by 24 h postmicroinjection,
CXIZ-infected proepicardial cells (arrow)
began migrating out of the PEO and onto the
surface of the naked myocardium. C: by
48 h, the PEO had involuted, and CXIZ-
infected proepicardial cells had incorporated
into the epicardium and underlying coronary
vessels. E: however, at 24 h postmicroinjec-
tion of wt-TBX5-CXIZ into embryos, in-
fected proepicardial cells (arrow) remained
in the PEO. F: by 48 h, only rare wt-TBX5-
CXIZ-infected proepicardial cells (arrow)
were evident outside of the now involuted
PEO.
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overexpression retards proepicardial cell migration out of cul-
tured PEO explants, migration of nontransgenic cells out of the
same PEOs is not impeded. Moreover, in the setting of mosaic
overexpression of TBX5 in the chick PEO, further cardiogenic
development does support the establishment of epicardium and
coronary vasculature from nontransgenic cells.

TBX5 modulation of cell differentiation has been reported in
both the heart and the limb. In this study, inhibition of proepi-
cardial cell migration occurs before the differentiating events
that constitute EMT and prevents the physical interaction of
EPDCs with myocardial cells that is required for EMT. Thus
we hypothesize that TBX5 regulation of cell migration is also
independent of its effects on cell differentiation. However, we
cannot exclude TBX5 modulation of early, as yet uncharacter-
ized, differentiating events that might occur within the PEO
before cells migrate over and into the myocardium.

Investigation of the role of Tbx5 in zebrafish fin develop-
ment also suggests independent contributions of Tbx5 to reg-
ulation of cell migration, proliferation, and differentiation.
Although there is a clear role for Tbx5 in cell differentiation
and proliferation during limb specification, Ahn et al. (2)
demonstrated that the contribution of Tbx5 to limb develop-
ment commences prior to limb bud formation. Antisense
knockdown of Tbx5 impairs mesenchymal aggregation of limb
precursor cells and, in a cell-autonomous fashion, prevents
lateral plate mesodermal cells from migrating to the nascent
pectoral fin bud. Cell adhesive properties may also be changed
during fin development in response to altered Tbx5 dose, and
likewise, defective proepicardial cell adhesion during migra-
tion out of the PEO may contribute to the impaired epicardial
formation and coronary vasculogenesis in our chick studies.
Altered dosage of other T-box transcription factors has also
been shown to modify cell migration. Loss of Tbx16 in the
zebrafish spadetail mutant causes a cell-autonomous distorted
convergence of marginal mesodermal cells during gastrulation
(20). Wilson et al. (72) proposed that abnormal notochord
morphogenesis in the setting of loss of T(Brachyury) is a
consequence of a defective migration of posterior mesodermal
cells through the primitive streak that may involve abnormal
cell adhesive properties. Future studies to decipher mecha-
nisms underlying TBX5 inhibition of proepicardial cell migra-
tion will explore potential regulation of cell-cell adhesion
molecules such as VCAM-1 (31) and BVES (70) and cell-

matrix adhesion molecules such as �4-integrin (73) that are
associated with proepicardial development (59), as well as
transcriptional regulators of epicardial EMT such as Ets-1 and
Ets-2 (35).

The molecular genetic events downstream from Tbx5 that
contribute to regulation of cell migration and EMT remain to
be defined. FGF isoforms (1, 2, and 7), TGF� isoforms (1, 2,
and 3), Ets-1, Ets-2, and Fog2 have all been implicated in
coronary vasculogenesis and cardiac EMT (35, 50, 64, 69).
Related molecules have all been tied to T-box gene activity in
other experimental models. FGF10 has been proposed to be a
downstream target of Tbx5 in murine limb development (1,
54). In Drosophila, the TGF� homolog decapentaplegic acts to
regulate expression of the T-box gene optomotor blind during
development of the wing imaginal disc (52). GATA-4 (the
binding partner of Fog2) interacts with Tbx5 and Nkx2.5 to
activate synergistically expression of the atrial natriuretic fac-
tor gene (15, 55, 68), and Gata-4 expression is altered in Tbx5
homozygous null mice (10). Thus these are all intriguing
candidate members of a Tbx5-dependent pathway operant in
proepicardial cells and their descendants.

Although our data exclude altered Tbx18 and Tbx20 expres-
sion as explanations for Tbx5-mediated modulation of proepi-
cardial cell migration, these data do not exclude a role in other
proepicardial cell behaviors including proliferation and differ-
entiation. Nor do our data exclude a role for Tbx5 in these
other properties either. Additionally, the observation that anti-
sense knockdown of Tbx5 inhibits proepicardial cell migration
while proepicardial physiological inactivation of Tbx5 expres-
sion is associated with promotion of cell migration suggests
that non-Tbx5-dependent pathways are operant in vivo as well.
Human and animal genetic studies have previously predicted
that T-box gene dose is finely regulated in normal develop-
ment, and perturbations that either increase or decrease T-box
gene dose lead to abnormal organogenesis. Murine models of
overexpression or haploinsufficiency of Tbx1 all lead to aortic
arch abnormalities that are also seen in humans with DiGeorge
syndrome who have deletions encompassing the Tbx1 gene
(19, 27, 36, 46). Abnormal cardiogenesis is a feature of murine
models of Tbx5 overexpression and haploinsufficiency (10, 34)
and is similar to the human congenital heart disease seen in
Holt-Oram patients with TBX5 haploinsufficiency and in hu-
mans with chromosome 12q2 duplications that include TBX5
(3, 32). Vascular anomalies (patent ductus arteriosus, persistent
left superior vena cava, anomalous pulmonary venous return,
aortic coarctation) have been variably noted in these human
patients and animal models, but coronary artery anatomy has
not been well studied in these individuals. TBX5 and other
members of TBX5-dependent pathways in PEO development
will be appropriate candidates for genetic analyses in individ-
uals with coronary artery and epicardial anomalies.

ACKNOWLEDGMENTS

We are grateful to Andy Wessels, Maurice J. B. van den Hoff, David Reese,
Romulo Hurtado, and Theresa Zagreda for advice regarding PEO manipulation
and histological analysis.

GRANTS

This work was supported by the March of Dimes Birth Defects Foundation
(to C. T. Basson), the Edward Mallinckrodt, Jr. Foundation (to C. T. Basson),
the Cornell Vascular Medicine Foundation (to C. T. Basson), National Heart,

Fig. 10. RT-PCR analysis of cTbx5 expression in embryonic chick PEO
explants and migrating proepicardial cells. After 72 h in culture, proepicardial
cells migrated onto the culture dish out of PEO explants. These explants were
microdissected from the culture dish, and separate RNA pools were prepared
from the residual stationary PEO and the migrating proepicardial cells. RT-
PCR analyses for cTbx5 and cGAPDH were performed as in Fig. 2 from RNA
derived from chick myocardium (lane a; positive control for cTbx5 and
cGAPDH expression), PEO explant (lane b), and migrating proepicardial cells
(lane c). cTbx5 is expressed in the residual nonmigrating PEO explant (lane b)
but not in the migratory proepicardial cells (lane c).
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