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Results

Introduction

Hypothesis

Activation of protein kinase C beta II (PKCPII) is known to stimulate polymorphonuclear We hypothesize that myr-PKCBII+ would increase fMLP or PMA -induced PMN SO

leukocyte (PMN) NADPH oxidase (NOX-2) to produce superoxide (SO). PKCBII is release, whereas, myr-PKCBII- would decrease this response as compared to non-drug —— PMA 100 M (130 PKC Bota Activator - native 20 uM (n=)
dependent on diacylglycerol (DAG) and calcium for its activation. Activated PKCQII then treated controls. We further predict that unconjugated, native PKCBII+/- peptide e e

binds to its selective receptor for activated C kinase (RACK) which enhances PKCplI| sequences would not differ from non-drug treated controls. - o Ihiber nate SR T - e e

translocation to the cell membrane and subsequent phosphorylation of membrane bound
proteins (1,2). Of these, PKCBII phosphorylation of NOX-2 generates SO release (Figs. 1 and
2). PKCPBII can be activated by both phorbol 12-myristate 13-acetate (PMA) and N-formyl-L-
methionyl-L-leucyl-L-phenylalanine (fMLP). PMA, a lipid soluble broad-spectrum PKC
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Research Design

P <0.05 Myr-PKCBII+ vs. PMA (180 sec to 240 sec)
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agomst, 1S a DAG mlmétlc that directly .actlvates PK(?BII_. fI\/I_I_P IS a chemotactl_c receptor Isolation of PMNs. Male Sprague-Dawley rats (350-400g, Charles River, Springfield o as >—9
agonist that directly activates PKCPII via the G-protein signaling cascade (see Fig. 1). MA) under anesthesia of 2.5% isoflurane were injected intraperitoneally (1.P.) with 16ml o ;/,_l/i\__“ -
of 0.5% glycogen dissolved in PBS to cause accumulation of PMNs. After 16—-18h, rats | |

were re-anesthetized with isoflurane and the PMNSs were harvested by peritoneal lavage
as previously described (5,7).
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WP e Figure 1. Schematic representation of

PKCBII role 1n stimulating SO release in
PMNSs. PMN chemotactic G-protein Measurement of SO Releas_e From Rat PMNs_. The SO _release from PMNs was | _
MR receptors are activated by fMLP. Activated measured spectrophotometrically by the reduction of ferricytochrome ¢ and superoxide 0-15-
TBEEEi) SImLIEES proslolligsse © e dismutase (SOD) 10ug/ml was used as positive control, as previously described (3,5,7). 0.1 -

(PLCP) to produce second messengers, ST _ :
inositol 1,4,5 trisphosphate (Ins(1,4,5)P,) Please refer to schematic diagram below: 0.05 -

and DAG respectively from phosphatidyl r ) r ) r ) r — 0 - | | | | | | |
inositol 4,5 bisphosphate (PtdIns(4,5)P,). 5 X106 PMNs +/- Stimulation with Measure change In Measure cell 0 30 60 90 120 150 180 210 240 270 300 330 360 390

Ins(1,4,5)P, stimulates Ca2* release from PKCBII peptides PMA (100nM) or %%%Og%a?ggait viability by 0.2% Time (Seconds)
PN 2 0 _ (20pM) fMLP (1puM) trypan blue

the endoplasmic reticulum (ER). Ca?* and response)

DAG directly activate PKCBII. PMA also

directly activates PKCBII. Activated

PKCBII phosphorylates NADPH oxidase,

which then releases SO (Adapted from 3).
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P < 0.05 Myr-PKCBII- vs. PMA (60 sec to 390 sec); vs. Myr-PKC Bl1+ (30 sec to 390 sec)

15 min. incubation
at 37°C

Figure 3. PMA (100nM) induced maximal PMN SO release at 330 sec to 0.41=%0.04 in non-drug treated
controls. PMA-induced PMN SO release was significantly increased by myr-PKCpI1+ from 180 to 240 sec
(P<0.05 vs. control ) and generated maximal SO release at 360-390 sec.(0.49%0.05). By contrast, myr-
.- : PKCBII- significantly decreased SO release to 0.26+0.04) at 360-390sec. SOD (n=8) reduced SO release
Statistical AnaIySIS >90% (not shown). Cell viability was >95% in all groups (not shown).
All data In the text and figures are presented as means = S.E.M. The data were
[
Conclusions

analyzed by ANOVA using the Fisher’s PLSD test. Probability values of <0.05 are
considered to be statistically significant.
1. Myr-PKCBII+ significantly increased PMA-induced PMN SO release (from 180 to 240
sec.) and myr-PKCBII- significantly decreased both PMA and fMLP-induced PMN SO
release (~ entire time-course). Native PKCBII+/- did not significantly attenuate PMA or
fMLP induced PMN SO release as compared to non-drug treated controls. The results

PMA

Inhibition of tissue NOX-2 attenuates the inflammation mediated vascular injury seen in
various diseases, including diabetes, myocardial infarction and organ transplantation (4).
Previously, a myristoylated (myr-) selective PKCBII RACK peptide inhibitor (N-myr-
SLNPEWNET,; myr-PKCpII-) was found to dose dependently inhibit PMA and fMLP-induced

PMN SO release and myocardial ischemia/reperfusion (MI/R) injury via the mechanism _ _
depicted in Figure 2 (3,5,6). Myristoylation of peptides is known to potentiate their entry into Resu ItS support our hypothesis except for the effects of PKCBII+ on TMLP-Induced SO release.

the cell via simple diffusion through the cell membrane to affect PKC activity (7). However, These results suggest that: (1) Myristic acid conjugation Is superior to native peptide

the role of myr-PKCBII RACK peptide activator (N-myr-SVEIWD: myr-PKCBII+) on e e e —— e e —— %n deli_ver_ing the cargo sequence to augment or inhibit PK(?B_H translocation. (2) PKCBII
regulation of PMN SO release has not been studied (8). The aim of the current study is to Is a principle PKC isoform that regulates PMN NOX-2 activity. (3) Myr-PKCBII+ may

compare the effects of myr-PKCBII+/- on fMLP or PMA-induced PMN SO release. - | | Induce desensitization of the PMN chemotactic receptor in fMLP-induced SO release
T Prepmmmmmer e zo v v TR A e S and may be responsible for the blunted SO release with this putative activator of PKCpII

C2-4 peptide inhibitor . translocation. (4) The current data support that treatment with myr-PKCBII- would be an
i S Ll ; effective strategy to limit inflammation-induced (i.e. PMNS) tissue damage in heart
P < 0.05 Myr-PKCBII+ vs. fMLP (90 to 180 - - - -
: JRi A ) attack patients or organ transplant recipients upon the restoration of blood flow.
PKC Bl — | . Future studies: (1a) To test a myr-conjugated scrambled PKC Bl1+ or Bl - to further
S | N S evaluate the proposed mechanism of action (augmentation or inhibition of PKCpI|
Pgﬁtétlﬂﬁ gﬂﬁ?ﬁlﬂr £ 0.15- | o o T B translocation) of the cargo sequences (SVEIWD [PKCBII+] or SLNPEWNET [PKCpII-
{ ) 2 1 ~_ D-. (1b) To conduct western blotting of native/myr-conjugated PKCBI1+ or PKCBII- and
Exasenisn oL MRS R lansioeann sesle e Presence of Myr-PKCE- [translocation inhibitor] o o | their myr-scrambled peptide counterparts in treated PMN cell lysates.
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